309不锈钢和310不锈钢通常表现出良好高温强度,抗蠕变性和抗腐蚀性。因此,它们被广泛应用于不锈钢热处理行业的熔炉零部件,如:传送带,滚筒,炉头,耐火垫板,吊管架等。同时也应用到化学加工业,主要承载热浓酸,氨水和二硫化物。在食品加工业,主要与热乙酸和柠檬酸接触。
不锈钢成分对比
表中的数值表示重量百分百,除特别说明范围外,表中都是最大值
309不锈钢物理性能
310不锈钢物理性能
所有的抗拉试验都是根据ASTM E8来完成的。表中的数据是若干个测试样品(最少2个样品,最多10个样品)得出来测试结果的平均值。屈服强度是通过0.2%抵消方法得到的。塑性延伸通过一个2英寸的样品来测量。
309不锈钢
309不锈钢机械性能
309S不锈钢
309s不锈钢机械性能
310不锈钢
310不锈钢机械性能
310S不锈钢
310S不锈钢机械性能
抗水溶液腐蚀
309/309S和310/310S主要用于高温环境下,抗氧化性利用率高。同时因为铬、镍含量较高,对水溶液也有一定的耐腐蚀性。
这类含镍量高的不锈钢对氯化物应力龟裂腐蚀的抵抗力比18-8不锈钢较强,但是309/309S和310/310S奥氏体不锈钢仍然容易受到腐蚀。
如要提高耐水溶液腐蚀,往往会用到310/310S。比如浓硝酸溶液环境。
高温抗氧化性
很多情况下,不锈钢都会与周围环境发生一定程度的化学反应。最常见氧化:金属元素与氧气结合后生成氧化物。不锈钢通过铬元素的局部氧化使其具有抗氧化性,在铬元素局部氧化的过程中,可以形成一种非常稳定的氧化物(Cr2O3 氧化铬)。只要金属的铬含量充足,在金属表面即可形成一层连续的氧化铬绿,防止其他氧化物生成,并对金属起到保护作用。氧化率是由带点粒子的传输来控制的。当表面的锈皮越厚,氧化率就会大幅度下降,因为带点粒子传输的路径越远。这个过程叫钝化,也就是钝化膜形成的过程。
奥氏体不锈钢的抗氧化性可以通过铬含量来推算。耐高温的不锈钢含铬量至少20%(重量百分百)。用镍成分代替铁成分也通常可以提供不锈钢在高温下的性能。309/309S,310/310S是高不锈钢材料,因此,具有相当好的抗氧化性。
已氧化的金属样品,其重量会有所增加,因为一定量的氧气组合到产品的氧化膜。测量金属抗氧化性的其中一种方法是:让金属在特定时间内暴露在高温环境下,然后测量其重量的变化。重量增加越多,表面氧化越严重。
氧化过程比简单的锈皮增厚要复杂得多。散裂,或者说表面皮分离,是不锈钢氧化过程中最常见的问题。散裂通常表现为急速的重量损失。其他一些因素也会引起散裂,其中主要包括热循环,机械损伤和氧化物过厚。
在氧化过程中,铬以氧化铬的形式存在于锈皮中。当氧化皮剥落时,未氧化的金属暴露出来,因为新的氧化铬的形成,材料的氧化率暂时升高。锈皮散裂到达一定程度,铬含量的损失可能引起金属的耐热性降低,从而导致铁氧化物和镍氧化物快速增加,这种情况称为破裂氧化。
高温氧化可能导致锈皮挥发。在耐热不锈钢表面形成的氧化铬,最开始是Cr2O3 ,当温度进一步升高时,会进一步氧化成具有高蒸汽压力的CrO3 。氧化物此时分成两部分:通过形成Cr2O3 使锈皮增厚,通过CrO3 的蒸发使锈皮变薄。最终的趋势是在增厚和变薄之间达到最终的平衡,从而使锈皮处于恒定的厚度。锈皮挥发在温度达到2000°F (1093°C)以上时,成为一个突出问题,在流动气体的作用下,会进一步恶化。
除了氧气以外,粒子在高温环境下也可以引起不锈钢的加速退化。硫的存在可以引起硫化腐蚀。不锈钢的硫化腐蚀是一个复杂的过程,而且很大程度上受硫和氧气含量以及硫的存在形式影响(比如:气态,氧化硫,氢化硫)。铬可以形成稳定的氧化物和硫化物。在氧气和含硫化合物共同存在的情况下,通常在外部形成氧化铬层作为一个保护层阻止硫进入。然而,硫化腐蚀仍然可以在锈皮损坏和分离的地方发生,在某些特定情况下,硫可以穿过氧化铬,在金属内部形成硫化铬。在含镍量高(25%或者更高)的不锈钢中,硫化作用增强。镍和硫化镍形成低熔点的共晶相,在高温条件下,可能对材料造成严重的损坏。
环境中如果存在含碳量高的粒子,会导致碳元素进入金属,随后形成内部碳化物。渗碳作用一般在温度1470°F (800°C)以上发生。内部渗碳金属会引起机械性能和物理性能的改变。通常来说,氧气可以通过在金属表面形成保护膜来阻止碳进入。较高的镍含量和硅含量都可以一定程度上减少渗碳作用。金属粉尘是渗碳作用的一种特殊形式,通常在较低温度范围发生(660-1650°F or 350-900°C)。金属粉尘可以通过一个复杂的机构把固体金属转换成石墨和金属微粒的混合物,进而形成较深的小坑,最终导致局部腐蚀。
在氮气存在的情况下,可能发生渗氮作用。氧化物通常比氮化物稳定,因此在含氧的大气环境中,通常形成氧化皮。这层保护膜可以很好地阻挡氮进入,因此在大气环境和气态的燃烧产物环境下,几乎不用考虑渗氮作用的影响。在纯氮环境下,尤其是在干燥,裂化氨气环境下,氧含量非常低,就可能发生渗氮作用。在相对低温的情况下,在金属表面可以形成氮化膜。在1832°F或1000°C)以上高温情况下,氮的扩散性可以迅速渗透金属,在晶界生成内部氮化物,影响金属的机械性能。
金相的不稳定性,高温暴露时形成新的金相,都可以反过来影响机械性能和降低耐腐蚀性。当奥氏体不锈钢在温度范围800-1650°F (427-899°C)缓慢冷却时,碳化物粒子常常在晶界沉淀(敏化作用)。铬和镍的含量越高,碳的可溶性就越低,也就是说更容易受敏化作用影响。在这个温度范围,推荐用强制淬火冷却,尤其是对于较厚的材料。随着碳含量的降低,形成碳化铬的时间和温度就增加。因此,这些不锈钢的低碳等级对敏化具有较好的抵抗力,但是并不是可以完全避免敏化作用的影响。当加热温度长期达到1200-1850°F (649-1010°C),309/309S,310/310S在室温下的延展性会降低,这是因为西格玛相和碳化物的影响。西格玛相通常在晶界形成并影响金属的延展性。这种副作用可以通过在指定温度重退火来消除。
高温退化很多程度受大气和其他作业环境影响。一般的氧化数据通常只能用于对不同不锈钢相对抗氧化性的估计。如果有需要,森迈尔钢铁公司,可以为您提供具体应用的抗氧化性数据和经验。
奥氏体等级被认为是不锈钢中最容易焊接的等级。它们可以通过所有常见的方法进行焊接。309/309S,310/310S也是如此。如果需要填充焊料,一般要选成分匹配的。因为这个等级的不锈钢含量提高,可以降低熔池的流动性。如果熔池的流动性仍然需要降低,可以采用含硅的焊料。
309/309S,310/310S的热膨胀系数较高,导热性较低,在固化的焊接金属中会形成少量的铁素体,可能导致热裂纹。这个问题在防脱焊口,宽焊口可能更严重。低不锈钢含量的焊料(如ER308)可以增加堆焊中的铁素体从而降低热裂纹的趋势。基焊金属的成分被稀释后,可能降低该金属焊口处的耐腐蚀性和耐热性。
S等级的含碳量相对较低。焊接得当的话,不太可能发生热影响区的粒间腐蚀。去除回火色和锈皮可恢复焊口附近的耐腐蚀性。采用不锈钢刷研磨和刷洗,可以去除回火色和锈皮。酸洗也可去除锈皮。小件的材料可以放入槽中酸洗,大件的材料,可以采用特制的硝酸,氟化氢酸,盐酸的混合物来局部清洗。酸洗以后,要用清水彻底洗掉酸洗的残留物。
对这些不锈钢进行退火的主要原因是产生一个再结晶的微细结构,达到均匀晶粒度,分解有害的碳化铬沉淀物。要确保完全退火,必须把材料置于2050-2150°F (1120-1175°C)温度范围内每英寸厚度所需时间约30分钟。这仅仅是一般的做法。特殊的情况可能需要特殊的处理方法。适当退火后,这些等级在室温下主要是奥氏体,少量的铁素体也可能存在。
309/309S,310/310S在空气退火过程中产生氧化皮是不可避免的。锈皮中含有丰富的铬并且具有一定的附着性。通常来说,在进一步加工之前都要把退火锈皮去除。去除锈皮有两种方法:机械方法和化学方法。表面喷砂和化学除锈二者相结合通常是去除所有顽固锈皮最有效的方法。硅砂,玻璃微珠是很好的喷砂材料。也可以采用铁粒,钢粒,但是这可能引起游离铁进入金属的表面,进而引起表面生锈或变色。
化学除锈通常采用硝酸和氢氟酸的混合物。化学槽液和加工温度通常视实际情况而定。常用的槽液包括5-15%HNO3 (65%初始强度) 和-3% HF (60% 初始强度)的水溶液。浓度过高的氢氟酸会导致除锈过猛。槽液温度通常从室温到140°F (50°C)。温度过高会导致除锈过快,槽液侵蚀晶界,进而造成金属表面出现凹槽。酸洗以后,要用清水彻底洗掉酸洗的残留物,然后干燥,避免金属表面出现斑渍。
由于309/309S,310/310S在室温下呈现奥氏体结构,因此不能通过热处理达到硬化。通过热作或冷作,可以达到更高的机械强度,但是这些等级通常达不到这种状态。通过冷作,也可以获得更好的抗拉强度和屈服强度,冷作后如果不退火,这些性能在高温下就不稳定,而这些不锈钢往往是用于高温作业。如果在高温环境下使用冷作后的材料,却刚好相反,会影响材料的蠕变性能。